由于长期机器人操作中的地图尺寸的增长,现有的同时定位和映射方法的可伸缩性受到限制。此外,处理此类地图进行本地化和计划任务会导致船上所需的计算资源增加。为了解决长期操作中记忆消耗的问题,我们开发了一种新型的实时SLAM算法,即Meslam,该算法基于神经场隐含的地图表示。它结合了提出的全球映射策略,包括神经网络分布和区域跟踪,以及外部进程系统。结果,该算法能够有效地训练多个代表不同地图区域的网络,并在大规模环境中准确地训练姿势。实验结果表明,所提出的方法的准确性与最新方法(平均为6.6 cm的TUM RGB-D序列)相当,并且优于基线,IMAP $^*$。此外,拟议的SLAM方法提供了最紧凑的地图,而没有细节变形(1.9 MB(1.9 MB)在最先进的大满贯方法中储存57 m $^3 $)。
translated by 谷歌翻译
在拟议的研究中,我们描述了一种方法,可通过在摄像机和猛击管道之间实现中间层来提高具有多个相机的移动机器人的视觉猛击算法和有限的计算能力的方法。在此层中,图像是使用基于RESNET18的神经网络对机器人定位的适用性进行分类的。该网络接受了在Skolkovo科学技术学院(Skoltech)校园收集的六摄像机数据集培训。对于训练,我们使用与随后的同一相机(“良好”关键点或功能)成功匹配的图像和球形功能。结果表明,网络能够准确地确定Orb-Slam2的最佳图像,并在SLAM管道中实施拟议的方法可以显着增加SLAM算法可以定位的图像数量,并提高其整体鲁棒性,并提高其整体鲁棒性。视觉大满贯。与使用Orb提取器和在CPU操作时使用Orb提取器和功能匹配器相比,操作时间的实验表明,在GPU上运行时,提出的方法的速度至少要快6倍。该网络评估在识别具有大量“良好” ORB关键的图像时至少显示了90%的精度。提出的方法的使用允许通过从具有贫困流的相机切换来保持整个数据集的大量功能。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
In this paper, we propose a new neural network architecture based on the H2 matrix. Even though networks with H2-inspired architecture already exist, and our approach is designed to reduce memory costs and improve performance by taking into account the sparsity template of the H2 matrix. In numerical comparison with alternative neural networks, including the known H2-based ones, our architecture showed itself as beneficial in terms of performance, memory, and scalability.
translated by 谷歌翻译
t-SNE remains one of the most popular embedding techniques for visualizing high-dimensional data. Most standard packages of t-SNE, such as scikit-learn, use the Barnes-Hut t-SNE (BH t-SNE) algorithm for large datasets. However, existing CPU implementations of this algorithm are inefficient. In this work, we accelerate the BH t-SNE on CPUs via cache optimizations, SIMD, parallelizing sequential steps, and improving parallelization of multithreaded steps. Our implementation (Acc-t-SNE) is up to 261x and 4x faster than scikit-learn and the state-of-the-art BH t-SNE implementation from daal4py, respectively, on a 32-core Intel(R) Icelake cloud instance.
translated by 谷歌翻译
We investigate a model for image/video quality assessment based on building a set of codevectors representing in a sense some basic properties of images, similar to well-known CORNIA model. We analyze the codebook building method and propose some modifications for it. Also the algorithm is investigated from the point of inference time reduction. Both natural and synthetic images are used for building codebooks and some analysis of synthetic images used for codebooks is provided. It is demonstrated the results on quality assessment may be improves with the use if synthetic images for codebook construction. We also demonstrate regimes of the algorithm in which real time execution on CPU is possible for sufficiently high correlations with mean opinion score (MOS). Various pooling strategies are considered as well as the problem of metric sensitivity to bitrate.
translated by 谷歌翻译
Online controlled experiments (A/B tests) have become the gold standard for learning the impact of new product features in technology companies. Randomization enables the inference of causality from an A/B test. The randomized assignment maps end users to experiment buckets and balances user characteristics between the groups. Therefore, experiments can attribute any outcome differences between the experiment groups to the product feature under experiment. Technology companies run A/B tests at scale -- hundreds if not thousands of A/B tests concurrently, each with millions of users. The large scale poses unique challenges to randomization. First, the randomized assignment must be fast since the experiment service receives hundreds of thousands of queries per second. Second, the variant assignments must be independent between experiments. Third, the assignment must be consistent when users revisit or an experiment enrolls more users. We present a novel assignment algorithm and statistical tests to validate the randomized assignments. Our results demonstrate that not only is this algorithm computationally fast but also satisfies the statistical requirements -- unbiased and independent.
translated by 谷歌翻译
Vision Transformers convert images to sequences by slicing them into patches. The size of these patches controls a speed/accuracy tradeoff, with smaller patches leading to higher accuracy at greater computational cost, but changing the patch size typically requires retraining the model. In this paper, we demonstrate that simply randomizing the patch size at training time leads to a single set of weights that performs well across a wide range of patch sizes, making it possible to tailor the model to different compute budgets at deployment time. We extensively evaluate the resulting model, which we call FlexiViT, on a wide range of tasks, including classification, image-text retrieval, open-world detection, panoptic segmentation, and semantic segmentation, concluding that it usually matches, and sometimes outperforms, standard ViT models trained at a single patch size in an otherwise identical setup. Hence, FlexiViT training is a simple drop-in improvement for ViT that makes it easy to add compute-adaptive capabilities to most models relying on a ViT backbone architecture. Code and pre-trained models are available at https://github.com/google-research/big_vision
translated by 谷歌翻译
Multi-agent path finding (MAPF) is a task of finding non-conflicting paths connecting agents' specified initial and goal positions in a shared environment. We focus on compilation-based solvers in which the MAPF problem is expressed in a different well established formalism such as mixed-integer linear programming (MILP), Boolean satisfiability (SAT), or constraint programming (CP). As the target solvers for these formalisms act as black-boxes it is challenging to integrate MAPF specific heuristics in the MAPF compilation-based solvers. We show in this work how the build a MAPF encoding for the target SAT solver in which domain specific heuristic knowledge is reflected. The heuristic knowledge is transferred to the SAT solver by selecting candidate paths for each agent and by constructing the encoding only for these candidate paths instead of constructing the encoding for all possible paths for an agent. The conducted experiments show that heuristically guided compilation outperforms the vanilla variants of the SAT-based MAPF solver.
translated by 谷歌翻译
The appearance of an object can be fleeting when it transforms. As eggs are broken or paper is torn, their color, shape and texture can change dramatically, preserving virtually nothing of the original except for the identity itself. Yet, this important phenomenon is largely absent from existing video object segmentation (VOS) benchmarks. In this work, we close the gap by collecting a new dataset for Video Object Segmentation under Transformations (VOST). It consists of more than 700 high-resolution videos, captured in diverse environments, which are 20 seconds long on average and densely labeled with instance masks. A careful, multi-step approach is adopted to ensure that these videos focus on complex object transformations, capturing their full temporal extent. We then extensively evaluate state-of-the-art VOS methods and make a number of important discoveries. In particular, we show that existing methods struggle when applied to this novel task and that their main limitation lies in over-reliance on static appearance cues. This motivates us to propose a few modifications for the top-performing baseline that improve its capabilities by better modeling spatio-temporal information. But more broadly, the hope is to stimulate discussion on learning more robust video object representations.
translated by 谷歌翻译